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Abstract: The use of m odern molecular techniques in the study of the  human microbiome has revealed an extraordinary diversity of 
microorganisms. There has been great interest in associating specific groups of organisms with health and disease. However, little is known 
about changes in the structure of the microbial community due to changes in the health status of the host. To assess these changes in the 
composition and s tructure of the microbiome, we focused our interest on the modifications in relative species abundance using 
metagenomics. Species abundance patterns have been used extensively in ecology to describe the structure of living communities. We 
present MetagenOutLDA, a new R library that allows full statistical analysis of metagenomic matrices to be carried out using standard 
statistical techniques. This library performs three basic tasks divided into three functions: 1) estimating metagenomic abundance profiles 
(relative abundance of species) for each sample using robust regression and graphical representation; 2) estimating different metagenomic 
alpha biodiversity; and 3) performing discriminant analysis to distinguish between sample groups (healthy / sick, group1 / group2, etc.) and 
provide a percentage of correct classification using different methods (LDA, QDA, support vector machine, robust LDA, etc.). Case analyses 
are presented in this paper using MetagenOutlineLDA for a metagenomic study of the human microbioma with people affected by Crohn's 
disease. We present the mathematical base of the different functions involved in MetagenOutlineLDA and an explanation of both its use 
and the results obtained. The results seem to confirm the hypothesis that inflammatory diseases such as Crohn's disease alter not only the 
composition of the human microbiome, but also its structure. The innovative nature of this work lies in the development of a new library to 
support the metagenomic analysis of the microbiome and help confirm that the species abundance distribution of the microbial community 
discriminates more effectively than its composition, which can be helpful for diagnosing disease. 

Index terms: metagenomic, microbiology, discriminant analysis, statistics, bioinformatics, medicine, R package  

——————————      —————————— 

1 INTRODUCTION                                                                     
atterns of taxa abundance distributions are the result of the 
combined effects of historical and biological processes and, 

as such, are central to ecology. Anthropogenic disturbance is 
known to affect the structure of bacterial communities [1]. In 
this work we go a step further to determine whether these dis-
turbances are present in the structure of bacterial communities 
(microbiota) of people affected by inflammatory diseases. De-
termination of microbiota structure may make it possible to 
identify the disease from a medical point of view. 
 
Modern molecular techniques have revealed an extraordinary 
diversity of microorganisms, most of which are still uncharac-
terized. This is a major challenge for microbial ecologists and 
statisticians: how can we compare the microbial diversity of dif-
ferent environments when the vast majority of microbial taxa 
remain unknown? The solution lies in the use of nonparametric 
estimation of metagenomes using statistical techniques, associ-
ated parameter estimation techniques and phylogeny of the 
community applied to microbial ecology [2].The combination 
of these statistical techniques with those of molecular biology 
allows for rigorous estimation and comparison of microbial di-
versity in different environments, such as the presence of dis-
ease. This is a complex task due to the variability of possible 
situations and the scarcity of current knowledge, although it is 
interesting as an adjunct in the diagnosis of human diseases. 

Researchers have often used values given by one or more diver-
sity indices to quantify the diversity of species in a biological 
sample from an ecological point of view. Such indices include 
species richness, the Shannon index, the Simpson index and the 
complement of the Simpson index (also known as the Gini-
Simpson index) [3]; [4]; [5]. 
Using replicated experimental treehole microcosms perturbed 
with different concentrations of the pollutant pentachlorophe-
nol, Ager et al. (2010) [1] observed changes in the bacterial com-
munity structure using  rank-abundance plots fitted with linear 
regression models. The slopes of the regression models were 
used as a descriptive statistic of changes in evenness over time 
[1]. 
 
The structure of bacteria has been studied before, and a reduc-
tion in bacteria richness and a change in the structure of the 
community are observed when there is a change such as a pol-
lution event [1], but no observations have been made in the case 
of human diseases. None of the classical species abundance dis-
tribution models (log-series, geometric-series, log-normal) will 
fit a range [6] of communities in varying states of disturbance 
(unperturbed to perturbed) or impoverishment (species-rich to 
poor), which is why [1] propose a nonlinear regression model 
to describe richness and community structure and use the slope 

P 

243

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 7, Issue 3, March-2016                                                                                  
ISSN 2229-5518 
 

IJSER © 2016 
http://www.ijser.org  

of the regression line to describe changes in the structure and 
richness of the bacterial community. 
 
Some research presents ecological distributions of health and 
adopts clinical metagenomic approaches, such as "Species 
abundance distributions and richness estimations in fungal 
metagenomics - lessons learned from community ecology" [7]. 
In that study, the authors observed that completely surveyed 
communities follow log-normal distributions, whereas power-
law functions best describe incompletely surveyed communi-
ties. It is arguable whether the statistics behind those theories 
can be applied to voluminous next-generation sequencing data 
in microbiology by treating individual DNA sequences as 
counts of molecular taxonomic units (MOTUs). So here we de-
fine metagenomics as the study of the microbiome from the di-
rect isolation of DNA in the environment.   
 

 
 
 
 

 

 

 

 

 

 

 

 
 
 
In some human diseases, it has been shown that there is a rela-
tionship between the profiles of the metagenomic and meta-
transcriptomic biodiversity of microbial flora and the pathol-
ogy of patients affected by periodontitis [8]; and more recently 
such a relationship has also been shown in other studies [9]. 
Those studies reveal the relationships between microbioma and 
human health. Study [9] reports the sequencing of 16 meta-
genomic samples collected from dental swabs and plaques rep-
resenting four periodontal states. A strong correlation between 
microbiota community structure and disease status was ob-
served and a core disease-associated community described. In 
the cases described [8], [10], [9], it was not possible to character-
ize the species abundance distribution or richness estimates us-
ing metagenomics, as occurred in [7]. However, periodontitis is 
not an isolated case, as a relationship seems to hold in other pa-

thologies associated with the conduct of microbiological com-
munities, such as Crohn's disease [10]. Figure 1 shows a highly 
magnified micrograph of an oesophageal biopsy from a patient 
with Crohn's disease.  
The paper “Metagenomic Analysis of the Structure and Func-
tion of the Human Gut Microbiota in Crohn's Disease” also pre-
sents a case of differential behaviour between gut microbial 
communities in the case of healthy people and people affected 
by the disease [10]. Crohn's disease seems to be caused by a 
combination of environmental factors and genetic predisposi-
tion. Crohn's is the first genetically complex disease in which 
the relationship between genetic risk factors and the immune 
system has been understood in considerable detail in different 
studies [11].  
The research carried out was initially based on the method used 
by Aget et al. [1] that involves observing changes in microbiome 
structure using rank-abundance plots fitted to linear regression 
models as a descriptive statistic for changes in evenness over 
time. We then also based it on the evidence that inflammatory 
diseases such as periodontitis and Crohn's disease alter not only 
the composition of the human microbiome, but also its struc-
ture, a complex trait that is difficult to measure and analyse. The 
aim of this paper is to present MetagenOutLDA, a new R library 
to help researchers in this field and confirm that the species 
abundance distribution of metagenomic microbial communi-
ties can discriminate groups of samples (e.g. disease/healthy) 
more effectively than the composition of the microbial commu-
nity, and to show how this can help in disease diagnosis. 
 
2 MATERIALS AND METHODS  
 
2.1 R package 
 
MetagenOutLDA was created using the GNU project: R. R is a 
widely used free software environment and programming lan-
guage for statistical computing and graphics. It compiles and 
runs on a wide variety of UNIX platforms, Windows and Ma-
cOS, and is supported by the R Foundation for Statistical Com-
puting [12]. The R language is widely used among statisticians 
and data scientists for developing statistical software and data 
analysis. The popularity of R has increased substantially in re-
cent years. [13]. 
 
The source code for the R software environment is written pri-
marily in C, Fortran and R. R is freely available under the GNU 
General Public License on https://www.r-project.org/.  
 
  

 
Fig. 1. Highly magnified micrograph of Crohn's disease. Biopsy 
of the oesophagus (from https://upload.wikimedia.org/wikipe-
dia/commons/f/f9/Crohn%27s_disease_-_esophagus_-
_high_mag.jpg., GNU li-cense) 
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2.1 Metagenomic example to illustrate the use of 
MetagenOutLDA 

 
The database Metagenomic Analysis of the Structure and Func-
tion of the Human Gut Microbiota in Crohn’s Disease [10] illus-
trates the use of the R library MetagenOutLDA. In this study, 
19 microbial metagenomic sequences were compared (12 pa-
tients affected by Crohn’s disease and 7 healthy people). The 
central hypotheses proposed in the study are: (1) that specific 
members and/or functional activities of the gastrointestinal mi-

crobiota differ in patients with Crohn’s disease and healthy in-
dividuals; and (2) that it will be possible to elucidate microbial 
signatures that correlate with the occurrence and progression 
of the disease by integrating data obtained from 16S rRNA-
based molecular fingerprinting, metagenomic and metaproteo-
mic approaches [10].  
 
We have used this study to create a new R library that makes it 
possible to properly discriminate study groups and also allows 
other researchers with similar matrix types to do so.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The structure of a typical metagenomics matrix (M) is shown in 
Figure 2 [15]. The meaning of the rows and columns is also ex-
plained in the figure. This matrix shows the p samples in the 
rows (in our example 19 patients) and the taxa identified by the 
molecular method or the organism identified (OTU: operational 
taxonomic unit) in the columns. This matrix is usually named 
M and its dimension is defined by p files and k columns: 
 

 Dim�Mij� = p ∙ k    (1) 
The log2(M’), where M’ is the transpose of matrix M, is usually 
used in metagenomics and for MetagenOutLDA. 
 
As a result of metagenomic analysis, M can be very large and 
usually has few samples and thousands of OTUs, most with 
small frequencies or 0 (Sparse matrix). Another characteristic is 
that each sample may be different: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Finally, the number of files during the statistical analysis (i) 

can be different in each column j (samples or patients), since we 
discard the rows with an OTU frequency of 0 and usually trans-
form the frequency in its log2(frequency), and the M and M’ ma-
trices are therefore algebraically difficult to manipulate and an-
alyse, which constitutes a good argument for building this new 
library. Some authors [8] also recommend deleting the rows 
with an OTU of just 1, although this type of data filtering is 
highly variable and can lead to different results, but can easily 

TABLE 1 
FUNCTIONS CONTAINED ON METAGENOUTLDA 

 

Function Description 

dmcmetagen() 

A function to calculate and 
graphically represent a profile () 
of a metagenomic abundance 
using nonlinear regression and 
robust confidence intervals. 

dmcbiodiv() 

A function to calculate alpha-bi-
odiversity indices (Shannon, 
Simpson and Inverse of Simp-
son). 

dmcTable() 

Generates a classification table, 
with the percentages of classifi-
cation of different methods: 
LDA, QDA, RRLDA, MDA, SVM 
using the results obtained at 
dmcbiodiv() and dmcmetagen() 

 

 
Fig. 2. Metagenomic matrix (M) structure (p rows: samples, k col-
umns: taxa or OTU (operational taxonomic units)). This matrix for-
mat is used by the MetagenOutLDA library as a baseline for dif-
ferent statistical analysis. 
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be implemented in the library. 
 

 
2.2 Description of the MetagenOutLDA library 
 
The MetagenOutLDA R library and the script used as an exam-
ple, which contains all the results mentioned in the present ar-
ticle, can be downloaded from the Github repository: 
www.github.com/amonleong/metagen 
 
For more help on using R, and downloading and installing R 
libraries, go to: 
https://www.r-project.org/ 
 
Within MetagenOutLDA, there is a matrix with the above men-
tioned data relating to the metagenomics of Crohn’s disease de-
scribed previously in [10]. 
 
All graphics, analysis and results discussed herein may be re-
produced from the material available in the Github repository. 
 
MetagenOutLDA has three easy-to-use functions described in 
Table 1 that analyse matrix Mij (see Formula 1): 1) dmcmeta-
gen(): to estimate the metagenomic profile of abundance and 
richness distribution (microbial community structure) of each 
patient using nonlinear regression, 2) dmcbiodiv(): to estimate 
different biodiversity indices, and 3) dmcTable(): to perform 
different discriminant analysis of the data and provide a per-
centage of correct classification.  
 
For each example of analysis using the MetagenOutLDA func-
tion, we briefly describe the method used, the results of the use 
of the function, and the results obtained in the Crohn’s disease 
example used in the present paper. 
 

2.3 Mathematical base of the function dmcmetagen() 
 
First of all, we estimate the parameters of a linear model or non-
linear polynomial multiple regression model (cubic model, or 
another model under consideration) of abundance within the 
microbiome from each matrix M’ column (see 1 and Figure 2), 
taking into account that the number of files (i) may be different 
in each column j (samples or patients), since we discard the 
rows with an OTU frequency of 0 and usually transform the 
frequency in its log2(frequency) to normalize the distribution of 
potential Poisson probabilities f(x) (Mij is the OTU frequency). 
Its species abundance profile is thus designated together with 
the goodness of fit (R2). Subsequently, different biodiversity in-
dicators are calculated. Finally, discriminant analysis is used to 
obtain a discriminant function that allows us to distinguish be-
tween health and disease. The classification matrix is used to 
assess the goodness of fit and quality of the classification by the 
function dmcmetagen. 

 
Nonlinear regression model. The normal linear regression 
model can be represented as: 
 

'
i i iy x β ε= +      (2) 

Where '
ix is a row vector of prediction for the ith of n observa-

tions, usually with a 1 in the first position representing the re-
gression constant β is the vector of regression parameters to be 
estimated and εi is a random error, assumed to be normally dis-
tributed, regardless of the errors in other observations, with ex-
pectation 0 and constant variance σ2 (Gauss-Markov condi-
tions), where the random error for each observation is: 
  

 εi ~ N(0,σ2)                   (3) 
 

Where  N(0,σ2) represents a Gaussian (normal) distribution of 
probability with mean 0 and variance  σ2. 
 
In the more general normal nonlinear regression model [15]; 
[16] the function 𝑓𝑓() that relates the response to the predictors 
(e.g. metagenomic abundance) is not necessarily linear: 
 

'( , )i i iy f xβ ε= +     (4) 
 

 As in the linear model, β is the vector of parameters and 𝑥𝑥𝑖𝑖′ is a 
vector of predictors (however, in the nonlinear regression 
model, these vectors do not generally have the same dimen-
sion), where the error term for each sample is εi ~ N(0,σ2)                 
[17]. 
 
The function dmcbiodiv() identifies which function 𝑓𝑓() best fits 
the data observed; the function may be polynomial, exponen-
tial, logistic, etc. In our case, different functions were tested and 
the cubic function was found to be well suited to the abundance 
metagenomic data (R2>0.9 and a good graphic fit). A possible 
model of abundance could be the cubic polynomial function, 
which has the form: 
 

yij = β0 + β1 xij+β2xij2+β3xij3 + εij   (5) 
 
where yij is the predicted metagenomic abundance,  𝑖𝑖 is the 
group (health, disease) and  𝑗𝑗 is the sample (person). 
Once the most representative metagenomic abundance model 
obtained by nonlinear regression has been established and the 
coefficient of determination of the model (𝑅𝑅2) determined, the 
means and confidence intervals of the model are estimated for 
each coefficient (β0,β1, β2, … )  and study population. 
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2.4 Mathematical base of the function dmcbiodiv() 
 

There is controversy regarding the nature of microbial commu-
nities [18]; [19]; despite this controversy, however, ecologists 
have made efforts to describe the properties of these communi-
ties. Species richness and abundance are the alpha diversity 
components that allow us to evaluate the community structure, 
which we conceive as the sum of its parts. Therefore, a rela-
tively simple way to describe a community is through the study 
of the species richness and abundance within it. The term “rich-
ness” refers to the number of species that make up the commu-
nity, while the term “abundance” refers to the number of indi-
viduals per species found in the community. 
 
Species richness (S) is the number of species (hits) in the sample, 
which monotonically increases with the true number of species 
(hits) in the community [19]; [21]. Here, we define S as the tax-
onomic content of the metagenomic dataset of the number of 
16S rRNA bands detected in the metagenomic analysis, using 
BLAST-P over the database MEGAN 3.7.5, as mentioned above. 
Metagenomic abundance and richness profiles for the samples 
analysed (Crohn’s disease) are presented in Figure 3.  
 
In addition, Whittaker (1972) [21] described three terms for 
measuring biodiversity over spatial scales: alpha, beta and 
gamma diversity. Alpha diversity refers to the diversity within 
a microbioma ecosystem, and is usually expressed as the num-
ber of species or hits found in the MEGAN 3.7.5 database (i.e. 
species richness) in that ecosystem. [22]. Some authors have 
suggested the use of the representative and widely recognized 
Shannon or Shannon-Weaver index (H’), or the Simpson index 
(D). Both are common in the ecology literature and are widely 
used to measure microbial community diversity [23]. However, 
these information-based indices are usually based on the quan-
tification of species abundance [19] and, as mentioned above, 
defining bacterial species is no trivial task.  
 
The Shannon diversity index (H’) is one of the most enduring 
methods of measuring overall biodiversity used in diversity 
studies. H’ is maximized when all species (hits) have the same 
number of samples (N), and is calculated from: 

 

2
1

' log ( )
N

i i
i

H p p
=

= −∑     (6) 

 
where pi is the proportion of the community represented by 
species (hits) i, and the summation is over all species (hits). The 
most common practice is to use natural logarithms, although 
some argue for base = 2, which makes sense but no real differ-
ence. H’ represents the uncertainty in predicting the species of 
an individual chosen at random [23]. 
The Simpson index, D, is a derivation of the original Simpson 
index, λ, which was the first diversity measurement proposed, 
where individuals chosen at random belong to the same spe-
cies. 0 is infinite diversity and 1 is no diversity (all the same spe-
cies). It is calculated from: 
 

2

1
1 1

N

i
i

D pλ
=

= − = −∑     (7) 

 
The disadvantage of S, H’ and D is that they are successively 
more sensitive to evenness [23], [20]. 
 
Moreover, parametric confidence intervals are estimated for the 
different estimators of the regression model coefficients and for 
the biodiversity indices.  

 
 

2.5 Mathematical base of the function dmcTable() 
 

This relates to analysis to discriminate between the populations 
considered. The problem of discrimination appears in many sit-
uations in which elements must be classified using incomplete 
information and was originally described by [24]. The goals of 
descriptive discriminant analysis include the following: 1) To 
identify the relative contribution of the variables (in this case 
the distribution associated with metagenomic abundance) to 
the separation of the groups (in the current example: disease 
and health), and also to find the optimal plane on which the 
points can be projected to best illustrate the discrimination be-
tween the groups, 2) To predict or allocate observations to 
groups, in which linear functions of the variables (classification 
functions) are used to assign an individual sampling unit to one 
of the groups. The values measured in the observation vector 
for an individual or object are evaluated by the classification 
functions to find the group to which the individual is most 
likely to belong. 
To perform discriminant analysis between the species abun-
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dance profiles of the health and disease groups, there are sev-
eral possible approaches [25]. Here we present the classical dis-
criminant analysis (LDA) developed by Fisher in 1936 [24], 
which is based on multivariate normality of the variables and 
is optimal under this assumption. If all the variables are contin-
uous, it is often possible to transform the variables in the same 
ways used for normal datasets, even though the original data 
are not normal. It is important to remember that we are using 
estimated coefficients (β0, β1,β2, …) and biodiversity indices (H’, 
D, …) as input variables, and normality is not guaranteed. This 
sort of analysis is frequently used in statistical pattern recogni-
tion [25], but has recently appeared in studies related to meta-
genomics, such as the paper "Feature selection in omics predic-
tion problems using cat scores and false nondiscovery rate con-
trol" [26]. 
 
Let P1 and P1 be the two populations studied (health and dis-
ease), where we have defined a random vector variable, 𝑥𝑥, with 
p variables (measures derived from metagenomic analysis: esti-
mations of parameters associated with abundance profiles, and 
biodiversity indices). We assume that 𝑥𝑥  is absolutely continu-
ous and that the density functions of both populations, f1 and 
f2, are known. We are going to study the problem of classifying 
a new element, x0, with known values of p variables, as one of 
these two populations. If we know the prior probabilities π1 and 
π2, with π1 + π2 = 1, and that the element comes from one or 
other of the two populations, its probability distribution will be 
a mixed distribution: 

1 1 2 2( ) ( )xf f x f xπ π= +   (7) 
and once x0  has been observed, we can compute the posterior 
probabilities that the element belongs to each of the two popu-
lations: P(i/x0), with i = 1, 2. These probabilities are calculated 
using Bayes’ theorem: 

0 1
0

1 1 2 2

( |1)(1| )
( ) ( )
P xP x

f x f x
π

π π
=

+   (8) 
We classify x0 in the most probable posterior population. Since 
the denominators are equal, we classify x0 in P1 if: 

2 2 0 1 1 0( ) ( )f x f xπ π>    (9) 
We are going to apply this analysis to the case in which f1 and 
f2 are normal distributions with different mean vectors, but 
with identical covariance matrices. In order to establish a gen-
eral rule, let us suppose that we wish to classify a generic ele-
ment x, which, if it belongs to the population i = 1, 2, has a den-
sity function of: 

1
1/ 2/ 2

1 1( ) exp ( ) ' ( )
2(2 )i i ip

f x x V x
V

µ µ
π

− = − − − 
 

(10) 

The optimal decision is to classify the element in population P1 
if: 

2 2 1 1( ) ( )
(2 |1) (1| 2)

f x f x
c c

π π
>

               (11) 
 
Since both terms are positive, taking logarithms and replacing 
fi(x) with its corresponding expression, the above equation be-
comes: 

1 12 1
2 2 1 1

1 1( ) ' ( ) log ( ) ' ( ) log
2 (2 |1) 2 (1| 2)

x V x x V x
c c
π πµ µ µ µ− −− − − + > − − − +

 
           (12) 

Letting Di
2 be the Mahalanobis distance between the observed 

point, x, and the mean of population i, defined by: 
 

2 1( ) ' ( )i i iD x V xµ µ−= − −              (13) 
we can then write:  

2 21 2
1 2log( ) log( )

(1| 2) (2 |1)
D D

c c
π π

− > −
             (14) 

And assuming that the costs and prior probabilities are equal, 
c(1|2) = c(2|1); 𝜋𝜋1 = 𝜋𝜋2 . The above rule can be simplified 
as: classify into 2 if  D1

2 > D2
2  . 

 
Or, rather, classify the observation into the population with the 
smallest Mahalanobis distance [27] . 
The function dmcmetagen provides a leader board featuring 
the results of linear discriminant analysis (LDA) with and with-
out cross-validation and other more complex techniques, such as: 
quadratic discriminant analysis (QDA), robust regularized linear 
discriminant analysis (RRLDA), multiple discriminant analysis 
(MDA) and support vector machine (SVM). We used all these 
techniques to avoid the effects of non-normality and determine 
which is the most effective for separating the groups.  
We used cross-validation, which is a statistical technique for es-
timating the performance of a predictive model. This model 
validation technique assesses how the results of a statistical 
analysis will generalize to an independent dataset. It is mainly 
used here to estimate how accurately a predictive model will 
perform in a new sample. 
 

3 RESULTS AND DISCUSSION 
Here we present the use and parameters of the three functions 
that comprise the MetagenOutLDA library, which has the three 
easy-to-use functions described in Table 1 and presented in de-
tail here. 
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3.1 Use of dmcmetagen() 
 

To obtain the metagenomic distribution profile, a nonlinear 
polynomial multiple regression model (cubic model, see For-
mula 5) is fitted to each of the subjects in the sample. The pa-
rameters of the regression model and the goodness of fit in the 
form of the coefficient of determination (R2) are reported, with 
robust confidence intervals in order to avoid the possible effects 
of non-normality of the Mij data. The function calls the linear 
model lm() function in R to fit the regression model. 

 
The function has the following arguments: 
 
dmcmetgen(Mat,regres_type, group, label_group, 

conf_int=0.95,  printGrups=TRUE, print=FALSE, ad-
just=TRUE, robust = TRUE,   order = TRUE, graphTitle="") 

 
The Mat parameter must be the matrix M (Dim�Mij� = p ∙ k, 

see Figure 2 and Formula 1) with data for the subjects in all the 
groups we want to study (group1/group2, healthy/disease, 
etc.). The data matrix must have a specific format, the subjects 
must be in the columns and the data (hits) must be in the rows; 
and the values of the data matrix must have the format shown 
in Figure 1. The order argument is used to indicate when it is 
necessary to order the data in the matrix. It is set to TRUE by 
default. The regres_type argument indicates to the function 
what type of regression model must be fitted to the data to es-
timate the parameters (linear or cubic model). 

 
The purpose of this function is to obtain the parameter esti-

mators (see Formula 5) of the regression model to subsequently 
use them for discriminant analysis. In order to use the results 
obtained with dmcmetagen(), it is necessary that the results dif-
ferentiate the group to which each of the subjects belongs. In 
order to obtain this information, the arguments group reports 
the group to which the subject belongs and it must be a vector 
v that indicates this (1, 1, …, 2, 2); while and label_group reports 
the names of the different groups and should be a vector that 
indicates the different names of the groups (disease, disease, …, 
health, health). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The function returns a matrix with the estimates of the pa-

rameters (β0, β1,β2, …) for the selected regression model, with a 
confidence interval of 95% and using the robust method by de-
fault, which can be modified by the arguments of the function 
conf_int and robust, respectively. In addition to these numeri-
cal results, graphic results are also obtained (see Figure 2); a 
graph for each of the groups is represented by default, print-
Grups=TRUE, without title, graphTitle=””. It is also possible to 
represent all metagenomic profiles in the same graph by setting 
the print argument to TRUE. 

 
 
 
 
 
 
 
 
 
 

 

Figure 2: Metagenomic abundance profiles for the sam-
ples analysed, represented using the MetagenOutLDA 
library and the function dcmetagen(). The X axis repre-
sents species (hits or OTU: operational taxonomic unit) 
and the Y axis represents Log2 of the OTU frequency 
(abundance) for every healthy (H) or disease (D) group 
for Crohn’ s disease samples. 
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3.2 Use of dmcbiodiv() 
 

This function has the following arguments: 
 
dmcbiodiv(Mat,order= TRUE,index=c("shannon","simp-

son")) 
 
As in the case of the function dmcmetagen() , this function 

also needs two arguments Mat, the matrix Mij with the data, and 
order, the logical argument indicating whether it is necessary 
to order the data. 

In addition to these two arguments, the argument index in-
dicates which of the alpha diversity indices must be calculated 
(H’, D, inv D). The different values that this argument can take 
are: “shannon”, “simpson” or “invsimpson”. 

The purpose of this function is to obtain alpha biodiversity 
indices in order to use them when subsequently performing a 
discriminant analysis to classify the data correctly. The function 
returns an array with the biodiversity index values indicated 
for each of the subjects (all groups) that are present in the da-
taset. The biodiversity indices for each sample are shown in Ta-
ble 2, with the estimation of coefficients done by  dmcbiodiv(). 

 
As complementary results, Table 2 does not present statisti-

cally significant differences (p>0.05) between the Shannon (H’) 
and Simpson (D) indices between the groups (disease and 
health). Otherwise, significant statistically differences (p<0.05) 
between coefficients (β0, β1, β2, …) of the groups studied (disease 
and health) are observed. These statistical differences can con-
firm that the species abundance distribution of the meta-
genomic microbial community (microbial community struc-
ture) discriminates better than its composition (alpha biodiver-
sity). 

3.3 Use of dmcTable() 
This function has the following arguments: 
 
dmcTable(Matmet,Matbd,la-
bel_group,lambda=0.2,hp=0.75,NameCoeff=c("B0","B1","B2",
"B3","Shannon","Simpson"), tol=0.0001) 
 
 
The arguments Matmet and Matbd are two matrices with the 
regression model coefficients and the biodiversity index, re-
spectively. Both matrices must have the same row dimension 
(each subject is in a row), but the column dimension is variable. 
With the label_group argument, we indicate to the function the 
names of the different groups in the study. 

 
The purpose of this function is to generate a summary table 

TABLE 2  
PERCENTAGE OF INDIVIDUALS CORRECTLY CLASSIFIED (HEALTH/DISEASE) 

USING DIFFERENT DISCRIMINANT ANALYSES. CV = CROSS VALIDATION 
     Shannon 

Index 

(H’) 

Simpson 
Index 

(D) 

Gp 

1 
6.4518(6.356

4,6.5473) 
-0.0335(-

0.0349,-0.0321) 1e-04(1e-04,1e-04) 0(0,0) 5.17 0.99 H 

2 
6.7989(6.699

6,6.8982) 
-0.0678(-

0.0709,-0.0647) 3e-04(3e-04,3e-04) 0(0,0) 4.60 0.98 H 

3 
6.1528(6.008

3,6.2974) 
-0.0686(-0.074,-

0.0632) 3e-04(3e-04,4e-04) 0(0,0) 4.37 0.96 H 

4 
6.2138(6.011

5,6.4161) 
-0.1473(-

0.1636,-0.131) 
0.0017(0.0014,0.00

21) 0(0,0) 3.77 0.94 H 

5 
6.3078(6.127

1,6.4885) 
-0.1365(-

0.1506,-0.1223) 
0.0013(0.001,0.001

6) 0(0,0) 3.84 0.95 H 

6 
5.47(5.3442,5

.5958) 
-0.0683(-

0.0728,-0.0638) 4e-04(3e-04,4e-04) 0(0,0) 4.70 0.98 H 

7 
5.7814(5.634

9,5.9279) 
-0.0921(-

0.1004,-0.0839) 7e-04(6e-04,8e-04) 0(0,0) 4.34 0.97 H 

8 
7.4564(7.245

8,7.6671) 
-0.1019(-

0.1096,-0.0942) 6e-04(5e-04,7e-04) 0(0,0) 3.54 0.91 H 

9 
6.5917(6.430

8,6.7525) 
-0.1045(-

0.1143,-0.0946) 7e-04(6e-04,9e-04) 0(0,0) 4.02 0.96 H 

10 
6.0485(5.851

2,6.2458) 
-0.132(-0.1429,-

0.121) 
0.0012(0.0011,0.00

14) 0(0,0) 4.07 0.96 H 

11 
6.0846(5.969

7,6.1995) 
-0.0618(-

0.0664,-0.0573) 3e-04(2e-04,3e-04) 0(0,0) 4.61 0.98 H 

12 
5.8261(5.728

3,5.9239) 
-0.0575(-

0.0603,-0.0546) 3e-04(2e-04,3e-04) 0(0,0) 4.90 0.98 H 

13 
5.6022(5.511

8,5.6927) 
-0.0944(-

0.0997,-0.089) 6e-04(6e-04,7e-04) 0(0,0) 4.40 0.98 D 

14 
4.3846(4.299

3,4.4699) 
-0.0458(-

0.0488,-0.0428) 2e-04(2e-04,2e-04) 0(0,0) 5.15 0.99 D 

15 
4.2704(4.150

3,4.3904) 
-0.0568(-

0.0627,-0.0508) 3e-04(2e-04,4e-04) 0(0,0) 4.81 0.99 D 

16 
6.1655(6.033

2,6.2979) 
-0.1387(-

0.1488,-0.1286) 
0.0013(0.0011,0.00

15) 0(0,0) 4.01 0.97 D 

17 
5.7139(5.641

2,5.7867) 
-0.0339(-

0.0354,-0.0325) 1e-04(1e-04,1e-04) 0(0,0) 5.42 0.99 D 

18 
5.309(5.2109,

5.4071) 
-0.0425(-

0.0452,-0.0398) 2e-04(1e-04,2e-04) 0(0,0) 5.16 0.99 D 

19 
5.3231(5.587

8,6.2196) 
-0.0358(-

0.1003,-0.0577) 1e-04(3e-04,8e-04) 0(0,0) 5.35 0.99 D 

 
 

Gp= group 

Num β0 β 1 β 2 β 3 
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(see Table 2) with the classification percentages of the different 
classification methods mentioned above, in order to determine 
which is better and whether it is possible to differentiate groups 
and thus create a diagnosis tool. This requires an indication of the 
data to be taken into account when the discriminant analysis is 
carried out. For this, we use the NameCoeff argument, which 

must be a vector with the parameter estimator (β0, β1, β2, …) and 
the biodiversity index (H’, D) we want to use for the discriminant 
analysis. 

 
The different methods are summarized in Table 3. The results 

of this function are: linear discriminant analysis (LDA) (with and 
without cross-validation), quadratic discriminant analysis 
(QDA), robust regularized linear discriminant analysis (RRLDA) 
(this method needs two specific arguments, lambda and hp), 
multiple discriminant analysis (MDA) and support vector ma-
chine (SVM). 

 
To avoid misclassification due to the introduction of parame-

ters that are below a certain value, the argument tol is used to 
indicate tolerance when entering the parameters in the classifica-
tion model. 

 
As Table 3 shows, it is possible to discriminate between 

groups using the library with a correct classification of between 
75% and 100%. This result is encouraging as it suggests the li-
brary tool presented here can perform correct diagnosis between 
groups through metagenomic analysis. Unfortunately, such ge-
netic analysis types are very expensive to carry out and could not 
be validated with larger samples that verify and validate their 
use. 

4 CONCLUSION 
Here we present the MetagenOutLDA R library: a set of three R 
robust and easy-to-use functions to calculate and discriminate 
OTU abundance profiles within microbial communities (health, 
disease). We explain how to use it by means of examples of peo-
ple affected by Crohn's disease.  
The function dmcmetagen() first fits the metagenomic profile of 
the abundance and richness distribution of each patient using 
nonlinear regression and robust confidence intervals of the pa-
rameters estimated. The function dmcTable() then analyses the 
biodiversity of the profile (the Shannon and Simpson indices); 
and finally the function dmcmetagen() performs discriminant 
analysis of the data obtained.  
Early results indicate that it is possible to discriminate between 
healthy and affected groups in Crohn's disease (75%-100% cor-
rectly classified) based on metagenomic analysis of the micro-
bioma.  Furthermore, this work is novel in that it confirms that 
the species abundance distribution of the metagenomic micro-
bial community (microbial community structure) discriminates 
better than its composition (alpha biodiversity) in these cases, 
and this can be helpful in the diagnosis of disease. 
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